An Efficient Adversarial Attack on Graph

Structured Data

Zhengyi Wang, Hang Su

Tsinghua University

Jan. 7th, 2021

Zhengyi Wang, Hang Su

- 1 Background
- 2 Formulation
- 3 Challenge
- 4 Cluster Attack

- Graph Adversarial Attack = Graph Neural Network + Adversarial Attack.
- Add fake nodes and extra connections.
- Lower the performance of node classification.

Zhengyi Wang, Hang Su

Problem Formulation

- Given G = (A, X), where $A \in \{0, 1\}^{N \times N}$ and $X \in \{0, 1\}^{N \times D}$
- Target node set V_{target} ⊆ V.
- Add N_{fake} fake nodes, leading to $G^+ = (A^+, X^+)$. where $A^+ = \begin{bmatrix} A & B^T \\ B & A_{fake} \end{bmatrix}$ and $X^+ = \begin{bmatrix} X \\ X_{fake} \end{bmatrix}$. (Mild perturbation.)
- Minimize the adversarial loss $\min_{A_{fake},B,X_{fake}} \mathbb{L}(G^+,V_{target})$ s.t. $||B||_0 \leq \Delta_{edge}$

$$\min_{A_{fake},B,X_{fake}} \mathbb{L}(G^+,V_{target}) \quad s.t. ||B||_0 \leq \Delta_{edge}$$

- Discrete optimization. Gradient method is prohibitive.
- Relax $A^+ \in \{0,1\}^{(N+N_{fake})\times(N+N_{fake})}$ to $A^+ \in [0,1]^{(N+N_{fake})\times(N+N_{fake})}$ to use PGD (Xu et al., 2019) \Rightarrow loss of accuracy.
- RL-based method (Sun et al., 2019)/Greedy search (Wang et al., 2018) \Rightarrow time consuming.

Zhengyi Wang, Hang Su

Algorithm

- Motivation divide target nodes into several clusters to gain better performance and lower the complexity.
- Target nodes in same cluster are supposed share a certain kind of similarity.
- How to denote this similarity? ⇒ Most Adversarial Feature.
- Features of fake nodes derive from cluster centers of Most Adversarial Feature.

Experiment Results

表 1: Success rate of targeted attack adding 4 fake nodes. T denotes number of target nodes.

Method	Cora				Citeseer			
	T=3	T = 5	T = 7	T = 10	T=3	T = 5	T = 7	T = 10
Random	0.07	0.08	0.04	0.05	0.04	0.02	0.03	0.03
NETTACK	0.61	0.57	0.55	0.53	0.75	0.71	0.66	0.61
Sequential Greedy	0.68	0.73	0.72	0.70	0.76	0.74	0.72	0.67
Cluster Attack	0.99	0.93	0.84	0.72	1.00	0.89	0.80	0.70

Generally, our algorithm outperforms existing baselines.

