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Adversarial Attacks

• Algorithms which prompt failure in neural networks.

• Practical Application: Can be applied in real-world scenario.

• Threats: Security and safety risks in neural network's
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An example of an Adversarial Attack (FGSM) in image classification Goodfellow et al. (2014).

Goodfellow I. J. , Shlens J., and Szegedy C.  (2014).  Explaining and harnessing adversarial examples.  arXiv preprint arXiv:1412.6572.



Adversarial Defence

• Algorithm which mitigate the effect of adversarial attacks.

• Problem: Not consistent, can be ineffective against stronger adversaries.
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Neural Architecture Search

• Algorithm which search for best possible architecture of neural network in
constraint environment.

• Aim: To develop methods that do not need specialists in order to be applied to a
different application.

• Shortcoming: Use of confined exploration area, which spans around the hand-
crafted architectures.

• Did you know? Neural Architecture Search has developed one of the SOTA
neural networks for image classification problem-NASNet Zoph et al. (2018).

6Zoph, B. and Le, Q. V (2018).  Learning transferable architectures for scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition , pages. 8697–8710.



Neural Architecture Search

Components of Neural Architecture Search

• Search Space:

• It defines the domain in which the algorithm searches.

• Most of this search space spans the space, which encompasses the accurate hand-crafted architectures.

• Search Strategy:

• It defines the policy used to explore the search space effectively in order to find the best feasible
solution.

• Some widely used search strategies are: Random Search, Bayesian Optimisation, Evolutionary Methods,
Reinforcement Learning, Gradient Based Methods

• Performance Estimation:

• It defines the fitness function, which is optimised by the search strategy.
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Robust Neural Architecture 
Search
• Populations

• Mutation Operators

• Evaluation of Architectures

• Niching Scheme

• Evolution
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Populations

• Layer Population:

Containing raw layers (Convolutional and
Fully Connected).

• Block Population:

Containing blocks which are a combination
of individuals from layer population

• Model Population:

Containing architectures which consist of
interconnected individuals from block
population.
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Illustration of the Considered Sub-Populations.



Mutation Operators

• Layer Mutation:

Changing kernel size Changing filter size Changing unit size Swapping layers

• Block Mutation:

Adding a layer Removing a layer Swapping blocks

Adding a layer connection Removing a layer connection

• Model Mutation:

Adding a block Removing a block

Adding a block connection Removing a block connection
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Evaluation of Architectures

Evaluated fitness of the neural network is:

Fitness = Accuracy – Robustness
• Accuracy: Calculated after the model is trained for 50 epochs on the

CIFAR-10's entire 100% training dataset on every 10th generation and
2% of the training dataset for every other generation.

• Robustness: Calculated using the adversarial samples created from the
model-agnostic (black-box) L0 and L∞ attacks Kotyan and Vargas (2019).

11Kotyan, S., & Vasconcellos Vargas, D. (2019). Adversarial Robustness Assessment: Why both $ L_0 $ and $ L_\infty $ Attacks Are Necessary. arXiv e-prints, arXiv-1906.



Niching Scheme
• To keep a high amount of diversity while exploring in vast search space is

achieved by using a novel niching scheme which is based on Spectrum-based
niching.

• Here, they use the spectrum as a histogram containing the number of;

Blocks Total Layers

Dense Layers Convolution Layers

Block Connections Total Layer Connections

Dense to Dense Connections Dense to Convolution Connections

Convolution to Dense Connections Convolution to Convolution Connections
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Evolution
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Illustration of the evolution.



Experimental Results

• An unwaveringly improving
accuracy curve over generations.

• Suggesting that in evolving, the
model steadily intrinsically robust
to a comprehensive assortment
of adversarial examples.
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Accuracy of architectures over generations in evolution.



Experimental Results

• The final evolved robust model is
trained with augmented data,

• Standard Accuracy of 88%

• Adversarial accuracy (accuracy on
adversarial examples) of 58%.

• The current state-of-the-art
architectures (ResNet, DenseNet
and WideResNet) have 0-10%
accuracy on these adversarial
samples.
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Accuracy of architectures over generations in evolution.



Characteristics of Robust Neural Network
Multiple Bottlenecks and Projections into High- Dimensional Space:

• The robust models have 

• Multiple bottlenecks for feature space

• Projections of feature space into 
higher-dimensional space. 

• This inference is a clear application 
of Cover's Theorem [1] which states 
that, 

• Projecting a feature space into a higher 
dimensional space makes a feature set 
linearly-separable. 
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Snippet of a part of a robust architecture.



Characteristics of Robust Neural Network
Paths with Different Constraints:

• A high-dimensional feature space 
gets split into multiple lower-
dimensional feature spaces, each 
distinct with each other. 

• This observation shows that 
several so-called paths do a 
separate analysis of the feature 
space.
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Snippet of a part of a robust architecture.
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Thank you !

Please feel free to ask questions.
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