Increasing Trustworthiness of Deep Neural Networks (DNNs) via Accuracy Monitoring

Zhihui Shao, Jianyi Yang, and Shaolei Ren UC Riverside

Outline

- Trustworthiness for DNN
- DNN Accuracy Monitor
- Experiment
- Conclusion

Trustworthiness for DNN - background

> DNN inference process

> Trustworthiness

Problem:

- How to obtain DNN accuracy on the user dataset D^U ?
 - Easy for dataset with labels.
- Estimate/monitor accuracy with (x_i, p_i) .

Challenges:

- 1. In real-world, we don't have labels!
 - Or user dataset with limited labels.
- 2. Black-box model for deployed DNN.
 - DNNs are provided by other vendors,
 - Machine learning as a service (MLaaS).

$$Acc = \frac{1}{|\mathcal{D}^{U}|} \sum_{(x_i, y_i) \in \mathcal{D}^{U}} \mathbf{I}(y_i = \tilde{y}_i)$$

Trustworthiness for DNN – related works

Uncertainty estimation

Target: estimate the uncertainty/accuracy for each input data.

- 1. Train DNN with ensemble models
 - But model are provided by vendor, cannot be re-trained.
- 2. Re-sample the DNN model weights
 - But weights of black-box DNN are not accessible.
- **3.** Estimate by the similarity between training and test.
 - But training dataset is unknown.
 - Requires training knowledge of deployed model!

Orthogonal to our work!

Trustworthiness for DNN – related works

Direct accuracy estimation

Target: directly estimate accuracy of DNN

- 1. Label with random sampling
 - label u% user data, and then estimate accuracy with these labels.
- 2. SoftMax probability method
- 3. Entropy method
- 4. **Temperature scaling** method
 - Re-calculate the SoftMax probability:

$$p_T = \frac{\mathrm{e}^{y_i/T}}{\sum_{k=1}^{\mathrm{N}} \mathrm{e}^{y_k/T}}$$

Consider as baselines in our work!

Outline

- Trustworthiness for DNN
- DNN Accuracy Monitor
- Experiment
- Conclusion

DNN Accuracy Monitor – illustration

- Deployed model: (Given)
 - Provide by product vendor.
 - Input: user data x;
 - Output: SoftMax probability p;
 - Black-box model for user.

- Monitor models: (our method)
 - Add-on part developed by third-party auditor.
 - Input: inference probability p;
 - Output: estimated accuracy;
 - Shallow models (MLP) with binary output.

DNN Accuracy Monitor – Monitor Learning

Step 1 Step 2 Step 3 **Training Phase Transfer Phase Monitoring Phase** Labeled Dataset User Data **User Data** Imag Image Deployed Model Deployed Model Label Deployed Model SoftMax probability **p** Correct **Monitor Models** Entropy Monitor Monitor Monitor Softmax probability **p** /Wrong Model Model Model Train Acquisition Function **Monitor Models Estimated** Pre-train with labeled data Transfer with active learning Estimate With MC dropout

DNN Accuracy Monitor – Model Training

- > Pre-training with labeled data:
 - Use public dataset (known labels).
 - Generate probability p on deployed model.
 - Obtain Correct/Wrong (CW) label of deployed model's estimation.
 - Train monitor on data pair (p, CW).
- > Loss function (binary cross-entropy):

$$Loss = -\frac{1}{N} \sum_{i=1}^{N} CW_i \cdot \log M_{\Theta}(p) + (1 - CW_i) \cdot \log(1 - M_{\Theta}(p))$$

- > Ensembled monitors:
 - Achieve robust estimation.

DNN Accuracy Monitor – Model Transfer

- ➤ Model transfer with active learning:
 - Generate probability p for D^t .
 - Actively label t% sample from target dataset D^t .
 - Train monitors on labeled data.
 - Label data with a higher entropy.
- > Transfer learning
 - Frozen the prior layers.
 - Transfer on the output layer.

DNN Accuracy Monitor – Monitoring

- > DNN monitoring with ensembled models:
 - Generate probability p for user data D^U .
 - Predict correctness probability s from each monitor model.
 - MC dropout method is used for monitoring phase.
 - Model accuracy is estimated from correctness probability s with threshold $th_{s}.$

$$\widetilde{Acc} = \frac{1}{|D^U|} \sum_{x \in D^U} \mathbb{I}[s(p_x) \ge th_s]$$

Ensembled models provide a more robust estimation.

Outline

- Trustworthiness for DNN
- DNN Accuracy Monitor
- Experiment
- Conclusion

DNN Accuracy Monitor – Experiment

> Setup

Application:

- General image classification
 - small-scale image CIFAR-10
 - large-scale image ImageNet
- Traffic sign detection for autonomous driving

Models and user dataset:

- small-scale image (10 class)
 - Model: VGG16; Dataset: CIFAR-10, CINIC-10, STL-10, AD-10
- large-scale image (1000 class)
 - Model: ResNet-50 and MobileNet; Dataset: ImageNet Validation
- Traffic sign detection (43 class)
 - Model: AlexNet; Dataset: German Traffic Sign Detection (GTSD)

Result – CIFAR-10

> Summary

- True inference accuracy of VGG16 model:
 - 0.9356 (CIFAR-10), 0.7617 (CINIC-10), 0.6304 (STL-10), and 0.3780 (AD-10).
- Our method provides more accurate estimation.
 - The std is provided by ensembled monitors for estimated accuracy.
 - Better than RS with 10x labelled data.

Method					
	CIFAR-10	CINIC-10	STL-10	AD-10	
Our method	0.9313 /0.0123	0.7691 /0.0138	0.6343 /0.0371	0.3866 /0.0322	→ mean/std
MP	0.8907	0.7574	0.7105	0.5035	
Entropy	0.8943	0.7662	0.7165	0.5380	
TS	0.9727	0.4066	0.8803	0.8618	
MP*	0.9756	0.9443	0.9319	0.7881	
RS (1%)	[0.8879,0.9852]	[0.6500, 0.7340]	[0.5274, 0.7382]	[0.2800,0.5100]	
RS (10%)	[0.9207,0.9516]	[0.7340, 0.7930]	[0.5976,0.6618]	[0.3400, 0.4080]	14

Result – ImageNet

> Summary

- True inference accuracy of model:
 - MobileNet: 0.6859 (ImageNet-A), 0.6791 (ImageNet-B)
 - ResNet-50: 0.6836 (ImageNet-A), 0.6727 (ImageNet-B)
- Our method still provides better result.
 - With similar distribution, the SoftMax can provide a good accuracy estimation.

Method	MobileNet		ResNet-50		
	ImageNet A	ImageNet B	ImageNet A	ImageNet B	
Our method	0.6933 /0.0202	0.6796 /0.0235	0.6862 /0.0240	0.6719 /0.0219	→ mean/std
MP	0.7203	0.7004	0.6765	0.6757	
Entropy	0.7032	0.7131	0.6724	0.6694	
TS	0.8094	0.8086	0.7771	0.8044	
MP*	0.7550	0.7539	0.7633	0.7638	
RS (1%)	[0.6197,0.7512]	[0.5866, 0.7754]	[0.6631,0.7029]	[0.6457,0.7049]	
RS (10%)	[0.6652,0.7057]	[0.6492,0.7073]	[0.6696,0.6987]	[0.6525,0.6959]	15

Result – Traffic Sign Detection

> Summary

- GTSD (German Traffic Sign Detection)
 - Generate 4 user datasets:
 - D1 (original), D2 (spatial transformation), OOD (\sim 50% images from CIFAR-10)
 - AD (~ 50% adversarial images)
 - True accuracy: D1(0.9734), D2(0.8401), OOD(0.5147), AD(0.4291)
- Our method still provides better result.

Method	Estimated Accuracy					
	GTSD-D1	GTSD-D2	GTSD-OOD	GTSD-AD		
Our method	0.9735 /0.001	0.8414 /0.005	0.5362 /0.005	0.4162 /0.001		
MP	0.9837	0.7991	0.5690	0.4886		
Entropy	0.9621	0.7866	0.5821	0.4806		
TS	0.9855	0.8004	0.7157	0.6884		
MP*	0.9895	0.9390	0.8861	0.9176		
RS (1%)	[0.9406,1.000]	[0.7624, 0.9307]	[0.4300,0.5900]	[0.3533,0.4900]		
RS (10%)	[0.9574,0.9871]	[0.8178,0.8693]	[0.4880,0.5387]	[0.4100,0.4460]		

Outline

- Trustworthiness for DNN
- DNN Accuracy Monitor
- Experiment
- Conclusion

Conclusion

- > Develop a monitor model to estimate DNN's inference accuracy
 - Our method is applicable to black-box model
 - No need to re-train the deployed model
 - No prior information required for the deployed model
 - Monitor model serves as a plug-in module
 - Evaluate the DNN performance
 - Ensembled method (MC dropout) + active learning
 - Less labelled data required compared with randomly labelling.

Thank you!

- Please contact us with questions and comments.
 - Zhihui Shao (zshao006@ucr.edu)
 - Jianyi Yang (jyang239@ucr.edu)
 - Shaolei Ren (sren@ece.ucr.edu)

Appendix - Baselines

> Random sampling (RS)

- u% of user's data is randomly sampled and manually labeled.
- Accuracy on the labeled samples is considered as the overall accuracy.

Maximum probability (MP)

- Maximum SoftMax probability: $MP = \max_{k \in \{1,2,...C\}} \{p_k(x)\}$
- MP*:
 - no manual labeling is required.
 - Average Maximum SoftMax probability is the estimated accuracy.
- MP:
 - $MP(x) \ge th_{MP}$ is considered as correct. (th_{MP} from labelled data)

> Entropy:

- $Entropy(x) \le th_{En}$ is considered as correct. (th_{En} from labelled data)
- > Temperature scaling (TS):
 - Re-calibrate SoftMax probability and then average p_T .
 - T is obtained from labelled data

$$p_T = \frac{\mathrm{e}^{y_i/T}}{\sum_{k=1}^{\mathrm{N}} \mathrm{e}^{y_k/T}}$$

Appendix – Training Algorithms

Algorithm 1: DNN Accuracy Monitoring

Input: A labeled dataset \mathcal{D}^R , user dataset \mathcal{D}^U , target model $M_{\Theta_d}(x)$, the MC dropout model number B, data labeling budget t%.

1. Obtain softmax probabilities for \mathcal{D}^R and \mathcal{D}^U .

$$\mathbf{p}^{R}(x) \leftarrow M_{\Theta_{d}}(x) \text{ for } x \in \mathcal{D}^{R};$$

$$CW^{R}(x) \leftarrow \mathbf{I}(\tilde{y} = y) \text{ for } (x, y) \in \mathcal{D}^{R};$$

$$\mathbf{p}^{U}(x) \leftarrow M_{\Theta_{d}}(x) \text{ for } x \in \mathcal{D}^{U};$$

2. Train monitor models with \mathbf{p}^R and CW^R .

for b = 1 to B do

```
Initialize \Theta_a^{(b)} for a monitor model M_{\Theta_a^{(b)}};

Train M_{\Theta_a^{(b)}} with (\mathbf{p}^R(x), CW^R(x));

s^{(b)}(\mathbf{p}^U(x)) \leftarrow M_{\Theta_a^{(b)}}(\mathbf{p}(x)) for x \in \mathcal{D}^U;
```

end

```
3. Actively label dataset \mathcal{D}^U_s from user's dataset \mathcal{D}^U Calculate Shannon entropy E(x) based on s^{(b)}(\mathbf{p}^U(x)) and average over B monitor models for (x,y) \in \mathcal{D}^U; \mathcal{D}^U_s \leftarrow \{(x,y) \in \mathcal{D}^U | E(x) \text{ among the top } t\%\}; \mathbf{p}^U_s(x) \leftarrow M_{\Theta_d}(x) \text{ for } (x,y) \in \mathcal{D}^U_s; CW^U_s(x) \leftarrow \mathbf{I}(\widetilde{y}=y) \text{ for } (x,y) \in \mathcal{D}^U_s; 4. Transfer learning and accuracy estimation. for b=1 to B do \mathbf{for}(\mathbf{p}^U(x)) \leftarrow \mathbf{for}(\mathbf{p}^U(x)) \leftarrow \mathbf{for}(\mathbf{p}^U(x)) \text{ for } x \in \mathcal{D}^U \setminus \mathcal{D}^U_s; end \mathbf{for}(\mathbf{p}^U(x)) \leftarrow \mathbf{for}(\mathbf{p}^U(x)) \text{ for } x \in \mathcal{D}^U \setminus \mathcal{D}^U_s;
```