Extracting Money from Causal Decision Theorists

Caspar Oesterheld, Vincent Conitzer
Department of Computer Science, Duke University
Background: Newcomb’s problem
Background: Newcomb’s problem

- A “being” offers two boxes.
Background: Newcomb’s problem

- A “being” offers two boxes.

<table>
<thead>
<tr>
<th>Box A:</th>
<th>$1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box B:</td>
<td>$1,000,000 or nothing</td>
</tr>
</tbody>
</table>
Background: Newcomb’s problem

- A “being” offers two boxes.

<table>
<thead>
<tr>
<th>Box A:</th>
<th>Box B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000</td>
<td>$1,000,000 or nothing</td>
</tr>
</tbody>
</table>

- Twist: Yesterday, the being filled box B if and only if it predicted the agent to take only box B.
Background: Newcomb’s problem

- A “being” offers two boxes.

 - Box A: $1,000
 - Box B: $1,000,000 or nothing

- Twist: Yesterday, the being filled box B if and only if it predicted the agent to take only box B.

- Causal Decision Theory: The agent cannot causally influence the box contents.
Background: Newcomb’s problem

- A “being” offers two boxes.

 - Box A: $1,000
 - Box B: $1,000,000 or nothing

- Twist: Yesterday, the being filled box B if and only if it predicted the agent to take only box B.

- Causal Decision Theory: The agent cannot causally influence the box contents.
 - \[\text{CEU(one-box)} = P(\text{box B full}) \cdot 1,000,000 \]
Background: Newcomb’s problem

- A “being” offers two boxes.
 - Box A: $1,000
 - Box B: $1,000,000 or nothing

- Twist: Yesterday, the being filled box B if and only if it predicted the agent to take only box B.

- Causal Decision Theory: The agent cannot causally influence the box contents.
 - \(\text{CEU(one-box)} = P(\text{box B full}) \cdot 1,000,000 \)
 - \(\text{CEU(two-box)} = P(\text{box B full}) \cdot (1,000,000 + 1,000) \)
Background: Newcomb’s problem

- A “being” offers two boxes.

 Box A: $1,000
 Box B: $1,000,000 or nothing

- Twist: Yesterday, the being filled box B if and only if it predicted the agent to take only box B.

- Causal Decision Theory: The agent cannot causally influence the box contents.
 - CEU(one-box) = P(box B full) · $1,000,000$
 - CEU(two-box) = P(box B full) · $1,000,000 + $1,000$

- Evidential Decision Theory:
 - EEU(one-box) = P(box B full | one-box) · $1,000,000$
Background: Newcomb’s problem

- A “being” offers two boxes.

 Box A: $1,000
 Box B: $1,000,000 or nothing

- Twist: Yesterday, the being filled box B if and only if it predicted the agent to take only box B.

- Causal Decision Theory: The agent cannot causally influence the box contents.
 - CEU(one-box) = P(box B full) \cdot $1,000,000
 - CEU(two-box) = P(box B full) \cdot $1,000,000 + $1,000

- Evidential Decision Theory:
 - EEU(one-box) = P(box B full | one-box) \cdot $1,000,000
 - EEU(two-box) = P(box B full | two-box) \cdot $1,000,000 + $1,000
Adversarial Offer
Adversarial Offer

- A being offers two boxes. Each costs $1 and contains $3 or nothing. The agent can buy \textit{at most one} box.
Adversarial Offer

- A being offers two boxes. Each costs $1 and contains $3 or nothing. The agent can buy *at most one* box.

Box 1: $3 or nothing

Box 2: $3 or nothing
Adversarial Offer

- A being offers two boxes. Each costs $1 and contains $3 or nothing. The agent can buy \textit{at most one} box.

- Twist: Yesterday, the being filled each box it predicted you \textit{not} to acquire.
Adversarial Offer

- A being offers two boxes. Each costs $1 and contains $3 or nothing. The agent can buy \textit{at most one} box.

- Twist: Yesterday, the being filled each box it predicted you \textit{not} to acquire.

- Causal Decision Theory:

 \[
 \text{CEU(box 1)} + \text{CEU(box 2)} \\
 = P(\text{box 1 filled}) \cdot $3 - $1 + P(\text{box 2 filled}) \cdot $3 - $1 \\
 \geq $3 - $2 = $1
 \]

 Hence, CDT recommends buying a box.
Thank you for your attention!