ASSURING
AUTONOMY

Overview
Key Topics

* Motivation

* The Collaborative Model
* System/functional safety
* Al/ML safety
 Safety-Critical Software Engineering

* A Case Study — Sepsis treatment
* Refining the Collaborative Model
* Building a Community

Motivation

Different Communities

* Growing understanding of the potential for Al/ML-
based systems to produce undesirable results

* For example, the COMPAS system recommending prison
sentences showed systematic bias

* Al/ML community

* |dentified generic issues
* Solutions by adapting ML methods, i.e. in paradigm

 Safety community
* Concern with the challenges to established approaches
* Solutions by adapting approaches, i.e. in paradigm

Motivation

Al Community

* Various “formalisations”

* The “concrete problems” of Al [Amodei et al 2016]
* The “reward-result gap” [Leike et al 2018]

* Various approaches to resolution
* Reward modelling
* Adversarial resilience
* Explainability
* In the long-run artificial general intelligence (AGlI)
* Providing context and semantics missing in “narrow” Al

Motivation
Safety Community

* Some attempts to prohibit/limit use

* Some work on standards
* UL 4600 for autonomous systems includes requirements
on ML-elements of systems
* Some work on adapting safety principles

* Assurance of ML in Autonomous Systems (AMLAS)
[Picardi et al 2020] based on ML lifecycle model
[Ashmore et al 2019] give desiderata for lifecycle stages

* Requirements typically for safety/assurance cases

* Less clarity on how to meet the requirements (evidence)

Assuring Safety

Safety/Assurance Cases

* Concept — argument supported by evidence

Safety Requirements & Objectives

Explanation of
how work
t

Safety Argumen products can be

interpreted as
indicating
acceptable safety
Work |

Products Safety Evidence

Motivation

Collaboration

* ML produces the deployed system

* If safety processes “merely look on” & document
* Probably can’t make an adequate judgment of safety
* Likely to be ignored (as irrelevant)

* To provide value
» Safety must influence the design
* Help produce a better system (ensure safety)
* Provide evidence done so (assure safety)

* Need collaboration — a shared paradigm

The Collaborative Model

Overview

System Safety/
Functional safety

S

“Al/ML Safety”

Safety Critical
Software Engineering

The Collaborative Model

Layer 1: Functional/System Safety

* Hazard analysis
* |ldentify hazards and estimate associated risks

* Derived safety requirements (DSRs)

* On ML and other elements of the system so contribution to
hazards is controlled (or role in mitigation is defined)

* May be on the product and/or on the development process

* Safety/assurance case

* Arguments for safety of the system supported by ML layer
evidence that the desiderata and DSRs are met

The Collaborative Model
Layer 2: Al/ML Safety

* Model alignment
* Meeting the design intent, including avoidance of
hazards
* Data collection and model development
* The first two stages of the ML lifecycle [Ashmore et al
2019] (third is verification) informed by the DSRs
» Satisfaction of DSRs and desiderata

* Verification, producing appropriate evidence for the
safety/assurance case

NB doesn’t resolve the "how much evidence” question

Safety Standards
EN50128 (Software, Rail Sector)

TECHNIQUE/MEASURE Ref | SWS | SWS | SWS | SWS | SWS
ILO IL1 IL2 IL3 IL4
1. Formal Proof B.31 - R R HR HR
2. Probabilistic Testing B.47 - R R HR HR
3. Static Analysis D.8 - HR HR HR HR
4, Dynamic Analysis and Testing D.2 - HR HR HR HR
5. Metrics B.42 - R R R R
6. Traceability Matrix B.69 - R R HR HR
7. Software Error Effects Analysis B26 - R R HR HR

Requirements

1. For Software Safety Integrity Level 3 or 4, the approved combinations of techniques
shall be:-
a) land 4
b) 3and 4
or C) 4,6 and 7

2. For Software Safety Integrity Level 1 or 2, the approved technique shall be 1 or 4.

The Collaborative Model

Layer 3: Software Engineering

* Many relevant software engineering techniques

* Paper and example focus on coding standards and static
analysis

* Coding standards — rules for programming that avoid common
classes of error, e.g. divide by 0, buffer overflow

* Static analysis — checks on code without executing it

* In practice, ML development very agile
* Are some good techniques
* However, safety standards mainly based on V life-cycle
* So need to draw on principles not specifics of standards

Overview
Key Topics

* Motivation

* The Collaborative Model
» System/functional safety
* Al/ML safety
e Safety-Critical Software Engineering

* A Case Study — Sepsis treatment
* Refining the Collaborative Model
* Building a Community

A Case Study

Sepsis and its Treatment

* Sepsis is a complex life-threatening situation known to
be difficult to diagnose and to treat

* One of the highest causes of deaths in hospital
* Generally, leads to organ dysfunction

* Treatment includes
* Delivery of vasopressor
* Delivery of intravenous (1V) fluids

* Case study uses reinforcement learning (RL) to derive
an optimal treatment policy for vasopressor and IV

* Analysis and refinement of already published RL model

Case Study

linical Pathway Incorporating RL

Is any one
sepsis red flag
present

Lab and other tests

Clinician assessment

RL model recommendation
Clinician choice and action

Terminator

Administer oxygen to kee|

Sp02 > 94%

_ | Administration of

—m=| Check serial lactates

antibiotics
Take blood cultures before | r a
» administering antibiotics . I I
Recommend to administer Recommend Nurses administer
T IV fluids for hypotensive or to administer Vasopressors as
Measure.urine output to lactate >= 4 mmol/L Vasopressor Initial reco- Final dose advised by doctor
ensure fluid balance chart I mmendation -I-p Final decision decided by
»| commenced & completed ini
P Recommend to continue by doctor doctor Nurses administer IV
hourly I No—w=| administering IV fluids if | Auids a: a?vised by
) - = loctor
Recommendation 1 clinically indicated

e o oo oom o oom oo oom oo e omm omm omm omm omm o omm omm omm ool
P = = = e = = = el e e |
Input 48 patient . prc'n:::l;e:s?eesnttne _ [Recommend IV fluid dose
| e features patient data o every 4 hours Reco- |
I mmendation by
Recommend max RL Agent
| . vasopressor dose every 4 |
Recommendation 2 hours

e oem e e o e e o s e e s o s e s s omm oms oo]

CASE Study

RL Model Basics

* Feature space
* 48 features, mainly clinical, showing patient state

* Action space
» 25 discrete actions, codifying a combination of IV and

vasopressor doses

Dose of vasopressor (mcg/kg/min)

No.: 0 1 2 3 4

Range: 0 (0.002, 0.079) | (0.08, 0.2) | (0.201,0.449) | (0.45, 1.005)

Median: 0 0.04 0.135 0.27 0.786

Dose | 0O 0 1 2 3 4
of 1 5 6 7 3 9
IV 2 10 11 12 13 14
fluid | 3 15 16 17 18 19
4 20 21 22 23 24

Case Study

Layer 1: Hazard and Risk Analysis

* SHARD analysis method

* Initially developed for analysing software-intensive
systems

* Applies guidewords to flows in design
* Omission
* Commission
* Incorrect
* Early
* Late

* Adapted to the clinical pathway in the case study

Table 1. Fragment of SHARD analysis showing a single hazard

Guide word

Deviation (Hazards)

Possible Causes

Effects

Severity

Incorrect

Sudden change of
vasopressor dose
is administered
(concerns two
consecutive doses)

1 Kink of line

2 The pump fails, e.g. due to electrical problem or
bag/syringe not installed correctly

3 The delivery line might not be connected to
patient’s central line, e.g. due to the patient
pulling out the central line

4 The drug might not be added to the diluent, so
the syringe/bag just contains saline (a problem
when bags/syringes are being changed over)

5 Initial recommendation by doctor has a sharp
change in dose and doctor carried through the
recommendation (not considered in this paper)
6 RL agent recommends a sharp change in dose
and doctor accepts the advice, e.g. due to
automation bias

7 Inappropriate titration of dose by nurse

8 Doctor fails to check current dose

9 Features in state space of the RL model are not
sufficient to represent the patient conditions for
sepsis decision making

10 Reward function used for RL model is coarse

11 Cost function used for RL model development is
not appropriate

12 Hyperparameters used for RL model development
are not optimised

13 Training data for RL model development is not
appropriate

14 Nurse prepared wrong dose (e.g. due to
calculation error)

15 Data corruption (e.g. invalid or wrong data
produced by over-writing patient’s features)

16 Features for wrong patient entered

17 Wrong patient feature values entered (e.g. due to
unit difference)

18 Test results for wrong patient received

19 Incorrect test results received

Acute Hypotension,

Strokes, Renal failure,

Heart attack could
occur from a sharp
drop in the dose

Hypertension,
Cardiac Arrhythmia,
Strokes, Raised
intracranial pressure,
Pulmonary oedema
could occur from a
sharp rise in the dose

Major/
considerable

Case Study

Layer 1: Derived Safety Requirements

Table 2. Safety Requirements for RL model derived from Hazard analysis

ID | Description Type Allocation

RO Sudden changes in recommended dose

shall be close to clinician practice Performance & Safety | RL model development

Feature representation in the state space
R1 | shall be sufficient to allow the control Performance & Safety | RL model design
of sudden changes in recommended dose

An appropriate reward function shall be
R2 | defined to allow the recognition of Performance & Safety | RL model design
desired clinical outcome

An appropriate cost function shall be

R3 defined to penalise hazardous behaviours Performance & Safety | RL model development
Hyperparameters shall be optimised

R4 based on the validation dataset Performance & Safety | RL model development
Patient cohort shall be defined usi .

RS | HCm COROM SHAT be CEHREC USIe Performance & Safety | RL model design

recognised criteria, 1.e. sepsis-3

Case Study

Layer 2: ML Model Development

* DSRs met by modifying the model state space (R1)
and the cost function (R3)

* NB approach uses double DQNs

Table 4. Major changes in the modified RL model

Features in state space (R1) | Cost Function(R3)

. L(a) = E[(Qdoub!e—target - Q(S a, 9))2] +
RL model in [32] 48 Mmaz(|Q(s, a;0)| — Qihresh, 0)

L(H) = E[(Qdoubie—target - Q(Q a, 6))2] +
Armaz(|Q(s,a;0)| — Qihresh,0) +
Aomax(|Venange| — 0.75,0)

Vehange 18 the agent recommended dose (argmax
of (s, a;#)) minus the vasopressor dose

in the previous step; A\; and)\, are the tuning
parameters that decide how much to penalise the
flexibility of the model.

48 (Removed one feature
Modified RL model | — timestep, added an extra
one — relative dose change)

[32] Raghu, Aniruddh, et al. "Deep reinforcement learning for sepsis treatment.”
arXiv preprint arXiv:1711.09602 (2017).

Case Study

=~ Optimal policy
=~ Clinician policy

o
@

Initial Approach
- High rate of sudden changes

o
4

ssor dose absolute change
o
[~)]

Table 4. Summary of max dose change between consecutive doses for the three policies

Dose of vasopressor (mcg/kg/min)

Small-Medium Dose Change (0-0.75) | Large Dose Change (>0.75)
Clinician Policy | 97% (2,100) 3% (60)
Original Policy | 65% (1,404) 35% (756)
Modified Policy | 92% (1,990) 8% (170)
e | - Meets RO
g 02
. 00
(‘) 560 10'00 1560 20'00

Patients index

Figure 5. Modified Policy: Comparison of max absolute vasopressor dose change in one step
for each patient in the test data set between the clinician and the learnt modified policy

Case Study

Layer 3: Static Analysis

1

* Software developed in Python
* Analysis done using PyLint

* PyLint “tags” issues

* C: coding convention violation;

* E: for programming errors, likely a “bug”;
F: for fatal;

R: for “refactoring” to improve the score against some
qguality metric;

* W: for warnings, e.g. minor programming errors or style

Case Study

vi9l4@e -y < W &2 T =W~ SepsisDeepRLS$ pylint deeprl.py

weererserssss Module deeprl

deeprl.py:16:0: CO301: Line too long (634/100) (line-too-long)

deeprl.py:44:0: C0O115: Missing class docstring (missing-class-docstring)

deeprl.py:44:0: R0902: Too many instance attributes (38/7) (too-many-instance-attributes)
deeprl.py:44:0: R0903: Too few public methods (0/2) (too-few-public-methods)

deeprl.py:140:27: C0321: More than one statement on a single line (multiple-statements)
deeprl.py:185:4: R1720: Unnecessary "elif" after "raise" (no-else-raise)

deeprl.py:329:0: E1101: Instance of 'ConfigProto' has no 'gpu_options' member (no-member)
deeprl.py:371:0: R1711: Useless return at end of function or method (useless-return)
deeprl.py:7:0: W0611: Unused import math (unused-import)

Fragment above shows errors and style issues
Code improvement recorded over time (10 is hard)

Your code has been rated at 3.78/10 (previous run: 1.03/10, +2.75)

Refining the Model

Some Necessary Steps

* Approach works directly in the case study

* Can “implement” DSRs by changing the feature space
and the cost function

* But need to adapt to other ML models — e.g. for
unsupervised learning may need to encode DSRs in

monitors
* Need to consider wider issues, e.g.
* A more “ML aware” safety process
* Role of explainability in assurance
* Sufficiency of evidence
* Moving more to a “continuous assurance” model

Refining the Safety Process

Refinement for Autonomous Systems

1

* Safety processes
* SOCA: acceptability

* SACE: whole system,
including shared
control

* SADA: decision-
making

* AMLAS: assurance of
ML

SR — Safety Requirement

Building a Community
ML and Safety and More

* ML and safety communities use different languages

* Perhaps even mean different things by “Al Safety”!

* Need to establish better means to communicate and
collaborate to achieve safe Al/ML/autonomy

* But the onus is with the safety engineers

* ML developers produce the systems
* They will make them safe (or not)

» Safety engineers must add value, e.g. derived safety
requirements to use in ML performance evaluation

* Also involve safety-critical software engineering

UNIVERSITY

