
Safety of Artificial Intelligence:
A Collaborative Model

Professor John McDermid OBE FREng
Ms Yan Jia

University of York, UK

Overview
Key Topics

• Motivation

• The Collaborative Model
• System/functional safety

• AI/ML safety

• Safety-Critical Software Engineering

• A Case Study – Sepsis treatment

• Refining the Collaborative Model

• Building a Community

Motivation

• Growing understanding of the potential for AI/ML-
based systems to produce undesirable results
• For example, the COMPAS system recommending prison

sentences showed systematic bias

• AI/ML community
• Identified generic issues
• Solutions by adapting ML methods, i.e. in paradigm

• Safety community
• Concern with the challenges to established approaches
• Solutions by adapting approaches, i.e. in paradigm

Different Communities

Motivation

• Various “formalisations”
• The “concrete problems” of AI [Amodei et al 2016]

• The “reward-result gap” [Leike et al 2018]

• Various approaches to resolution
• Reward modelling

• Adversarial resilience

• Explainability

• In the long-run artificial general intelligence (AGI)
• Providing context and semantics missing in “narrow” AI

AI Community

Motivation

• Some attempts to prohibit/limit use

• Some work on standards
• UL 4600 for autonomous systems includes requirements

on ML-elements of systems

• Some work on adapting safety principles
• Assurance of ML in Autonomous Systems (AMLAS)

[Picardi et al 2020] based on ML lifecycle model
[Ashmore et al 2019] give desiderata for lifecycle stages

• Requirements typically for safety/assurance cases
• Less clarity on how to meet the requirements (evidence)

Safety Community

Assuring Safety

• Concept – argument supported by evidence

Safety/Assurance Cases

Safety Requirements & Objectives

Safety Evidence

Safety Argument

Work
Products

Explanation of
how work

products can be
interpreted as

indicating
acceptable safety

Motivation

• ML produces the deployed system

• If safety processes “merely look on” & document
• Probably can’t make an adequate judgment of safety

• Likely to be ignored (as irrelevant)

• To provide value
• Safety must influence the design

• Help produce a better system (ensure safety)

• Provide evidence done so (assure safety)

• Need collaboration – a shared paradigm

Collaboration

The Collaborative Model
Overview

The Collaborative Model

• Hazard analysis
• Identify hazards and estimate associated risks

• Derived safety requirements (DSRs)
• On ML and other elements of the system so contribution to

hazards is controlled (or role in mitigation is defined)

• May be on the product and/or on the development process

• Safety/assurance case
• Arguments for safety of the system supported by ML layer

evidence that the desiderata and DSRs are met

Layer 1: Functional/System Safety

The Collaborative Model

• Model alignment
• Meeting the design intent, including avoidance of

hazards

• Data collection and model development
• The first two stages of the ML lifecycle [Ashmore et al

2019] (third is verification) informed by the DSRs

• Satisfaction of DSRs and desiderata
• Verification, producing appropriate evidence for the

safety/assurance case
NB doesn’t resolve the ”how much evidence” question

Layer 2: AI/ML Safety

Safety Standards
EN50128 (Software, Rail Sector)

TECHNIQUE/MEASURE Ref SWS
ILO

SWS
IL1

SWS
IL2

SWS
IL3

SWS
IL4

1. FormaI Proof B.31 - R R HR HR

2. Probabilistic Testing B.47 - R R HR HR

3. Static Analysis D.8 - HR HR HR HR

4. Dynamic Analysis and Testing D.2 - HR HR HR HR

5. Metrics B.42 - R R R R

6. Traceability Matrix B.69 - R R HR HR

7. Software Error Effects Analysis B26 - R R HR HR

Requirements

1. For Software Safety Integrity Level 3 or 4, the approved combinations of techniques
shall be:-

 a) 1 and 4
 b) 3 and 4
 or c) 4, 6 and 7

2. For Software Safety Integrity Level 1 or 2, the approved technique shall be 1 or 4.

The Collaborative Model

• Many relevant software engineering techniques
• Paper and example focus on coding standards and static

analysis
• Coding standards – rules for programming that avoid common

classes of error, e.g. divide by 0, buffer overflow

• Static analysis – checks on code without executing it

• In practice, ML development very agile
• Are some good techniques

• However, safety standards mainly based on V life-cycle

• So need to draw on principles not specifics of standards

Layer 3: Software Engineering

Overview
Key Topics

• Motivation

• The Collaborative Model
• System/functional safety

• AI/ML safety

• Safety-Critical Software Engineering

• A Case Study – Sepsis treatment

• Refining the Collaborative Model

• Building a Community

A Case Study

• Sepsis is a complex life-threatening situation known to
be difficult to diagnose and to treat
• One of the highest causes of deaths in hospital

• Generally, leads to organ dysfunction

• Treatment includes
• Delivery of vasopressor

• Delivery of intravenous (IV) fluids

• Case study uses reinforcement learning (RL) to derive
an optimal treatment policy for vasopressor and IV
• Analysis and refinement of already published RL model

Sepsis and its Treatment

Case Study
Clinical Pathway Incorporating RL

Lab and other tests
Clinician assessment

RL model recommendation
Clinician choice and action

Lab and other tests
Clinician assessment

RL model recommendation
Clinician choice and action

CASE Study

• Feature space
• 48 features, mainly clinical, showing patient state

• Action space
• 25 discrete actions, codifying a combination of IV and

vasopressor doses

RL Model Basics

Case Study

• SHARD analysis method
• Initially developed for analysing software-intensive

systems

• Applies guidewords to flows in design
• Omission

• Commission

• Incorrect

• Early

• Late

• Adapted to the clinical pathway in the case study

Layer 1: Hazard and Risk Analysis

Case Study
Layer 1: Derived Safety Requirements

Case Study

• DSRs met by modifying the model state space (R1)
and the cost function (R3)
• NB approach uses double DQNs

Layer 2: ML Model Development

[32] Raghu, Aniruddh, et al. "Deep reinforcement learning for sepsis treatment.”
arXiv preprint arXiv:1711.09602 (2017).

Case Study

Initial Approach
- High rate of sudden changes

Modified approach
- Closer to clinicians
- Meets R0

Case Study

• Software developed in Python
• Analysis done using PyLint

• PyLint “tags” issues
• C: coding convention violation;

• E: for programming errors, likely a “bug”;

• F: for fatal;

• R: for “refactoring” to improve the score against some
quality metric;

• W: for warnings, e.g. minor programming errors or style

Layer 3: Static Analysis

Case Study
Layer 3: Static Analysis

• Fragment above shows errors and style issues

• Code improvement recorded over time (10 is hard)

Refining the Model

• Approach works directly in the case study
• Can “implement” DSRs by changing the feature space

and the cost function
• But need to adapt to other ML models – e.g. for

unsupervised learning may need to encode DSRs in
monitors

• Need to consider wider issues, e.g.
• A more “ML aware” safety process
• Role of explainability in assurance
• Sufficiency of evidence
• Moving more to a “continuous assurance” model

Some Necessary Steps

Refining the Safety Process

• Safety processes
• SOCA: acceptability

• SACE: whole system,
including shared
control

• SAUS: understanding

• SADA: decision-
making

• AMLAS: assurance of
ML

Refinement for Autonomous Systems

SR – Safety Requirement

Building a Community

• ML and safety communities use different languages
• Perhaps even mean different things by “AI Safety”!

• Need to establish better means to communicate and
collaborate to achieve safe AI/ML/autonomy

• But the onus is with the safety engineers
• ML developers produce the systems

• They will make them safe (or not)

• Safety engineers must add value, e.g. derived safety
requirements to use in ML performance evaluation

• Also involve safety-critical software engineering

ML and Safety and More

Funded by

