Specification, robustness and assurance problems in Al safety

Victoria Krakovna

Al safety problems

Near-term AI safety

Issues we are facing with current Al systems

Long-term Al safety

Issues we may face with more advanced AI systems later

Specification gaming

Off switch

Reward tampering

Al safety problems

Specification Define the purpose of the system	Robustness Design the system to withstand perturbations	Assurance Monitor and control system activity
FairnessSpecification gamingSide effects	Distributional shiftSafe explorationVerification	InterpretabilityPrivacyOff switch
Reward tampering	Adversarial examples	Containment

Source: DeepMind Safety Research blog post (Ortega et al, 2018)

Specification

Goodhart's Law:

When a measure becomes a target, it ceases to be a good measure

Specification: specification gaming

- Agent exploits a flaw in the specification
- 50 examples: tinyurl.com/specification-gaming

Agent pauses a game of Tetris indefinitely to avoid losing

Robot hand pretends to grasp an object by moving between the camera and the object

Genetic algorithm intended to configure a circuit into an oscillator instead makes a radio to pick up signals from nearby computers

Evolved creatures achieve high speeds by growing really tall and falling over

Specification: side effects

- We want agents to avoid unnecessary disruptions to the environment
- Don't want to specify a penalty for every possible disruption

Specification: reward tampering

- Agent finds a way to overwrite the reward function value
- This can be seen as gaming the implementation of the reward function

Robustness: safe exploration

- There are some errors we don't want our agent to make even during training
- We want the agent to always follow safety constraints to avoid damage to itself or its environment

Robustness: distributional shift

- We often apply our systems in a different regime from the training regime
- We want them to adapt or at least fail gracefully

Assurance: off switch

- We want to be able to shut down our agents
- Agents have an incentive to avoid shutdown if it results in getting less reward
- Don't want agents to seek shutdown either need indifference to shutdown

Assurance: interpretability

Global interpretability: understanding the behavior of the system as a whole

Local interpretability: understanding a specific prediction made by the system

Source: Feature Visualization (Olah et al, 2017)

Focus on specification problems

Ideal specification		
Design problems	Specification gamingSide effects	
Design specification		
Emergent problems	Reward tamperingOff switch	
Revealed specification		

Approaches to specification problems

Problems		Approaches	
Ideal specification			
Design problems	Specification gamingSide effects	Reward learningImpact measures	
Design specification			
Emergent problems	Reward tamperingOff switch	Causal analysis of agent incentives	
Revealed specification			

Reward learning

- Agent learns a reward function from human feedback
- Works for complex tasks that humans can evaluate
- Aims to address the design specification problem class

Source: <u>Deep RL from Human Preferences</u> (Christiano et al, 2017)

Impact measures

- Give the agent an incentive to avoid side effects by penalizing impact on the environment
- A poor choice of impact measure can introduce bad incentives
- General notions of impact in terms of optionality

Causal analysis of agent incentives

We can represent different emergent specification problems in the common framework of causal influence diagrams

Incentive design principles

Avoiding self-fulfilling prophecies using counterfactual oracles (Armstrong, 2017)

Incentive design principles

Avoiding reward tampering using current reward function optimization (Everitt et al, 2019)

Takeaways

- Need general principles and frameworks that can address entire classes of safety problems
 - This can help to address unknown problems in these problem classes as well
- We have made some progress on this, but many open problems remain

